
workshops.de

Workshop
 Angular Advanced

workshops.de

Accessibility (a11y)
Allow everyone to use your applications

workshops.de

Making your websites

usable by as many people as possible

Why / What you’ll learn

workshops.de

￫ Semantic HTML, which improves accessibility, also improves SEO,

making your site more findable.

￫ Ethics and morals

￫ More usable by other groups

￫ It is also the law in some places

workshops.de

Disability
Overview about permanent and temporary Disabilities

workshops.de

People with disabilities

￫ Visual: Blind, low-vision, color blind

￫ Hearing: Deaf, hard-of-hearing

￫ Motor: spinal cord injury, MS, Cerebral palsy, ALS

￫ Cognitive: Autism, learning, TBI, memory, attention

workshops.de

Visual Disability

Permanent Temporary

(Color) Blind Sunglasses Helmet

workshops.de

Motor disabilities

Permanent Temporary

No Hand Broken Hand On the move

workshops.de

Color and Contrast

workshops.de

Color Blind People

Original

workshops.de

Color Blind People

Original Red-Blind People

workshops.de

Chrome Extension: Colorblinding

workshops.de

Chrome Extension: Colorblinding

workshops.de

Chrome Devtools: Contrast Ratio

￫ Build in chrome devtools

￫ Just select an element and click on

the color

Task

workshops.de

Check your page for color-blindness

workshops.de

HTML
A good basis for accessibility

<code>

workshops.de

HTML Semantics
Best accessibility a screen reader user can have is a content structure

<h1>My heading</h1>

<p>This is the first section of my document.</p>

<p>I'll add another paragraph here too.</p>

 Here is
 a list for
 you to read

<h2>My subheading</h2>

<code>

workshops.de

HTML Semantics
Modern website structure for layouts(instead of table layout)

<header>
 <h1>Header</h1>
</header>

<nav><!-- main navigation in here --></nav>

<!-- Here is our page's main content -->
<main>

 <!-- It contains an article -->
 <article>
 <h2>Article heading</h2>

<code>

workshops.de

HTML Semantics
Beware of keyboard accessibility

<div (click)="clicked()">Click me!</div>

<code>

workshops.de

HTML Semantics
Beware of keyboard accessibility

<div (click)="clicked()">Click me!</div>

<button (click)="clicked()">Click me!</button>

<div (click)="clicked()" tabindex="0">Click me!</div>

<code>

workshops.de

HTML Semantics
Meaningful text labels

Whales are really awesome creatures. To find more out about whales, click here.

Whales are really awesome creatures.
 Find out more about whales.

<code>

workshops.de

HTML Semantics
Define alternative text for images

<img src="dinosaur.png"
 alt="A red Tyrannosaurus Rex: A two legged dinosaur standing upright
like a human, with small arms, and a large head with lots of sharp
teeth."
 title="The Mozilla red dinosaur">

workshops.de

ARIA
Accessible Rich Internet Applications

workshops.de

ARIA defines a way to make Web content and

Web applications more accessible to people with

disabilities

Why / What you’ll learn

workshops.de

￫ It’s a official W3C specification

￫ More accessible to people with disabilities

￫ Defines roles, states and properties

￫ Adds more semantic to HTML elements

Role Attributes

workshops.de

roles defining a type of user interface element

<code>

workshops.de

Example Role
This link behaves more like a button and is marked with this role

Delete

workshops.de

Each role has
different states and
properties that can
be defined

<code>

workshops.de

Example Aria-Attribute
With aria-label a screen reader knows what to read on focus

Delete

<code>

workshops.de

Aria Alerts
Screen readers won't pick this up or alert users to it by default

<div class="errors" role="alert" aria-relevant="all">

</div>

<code>

workshops.de

Aria Properties
Use labelledby if you display the alt-text anyway

<p id="dino-label">The Mozilla red Tyrannosaurus Rex: A two legged

dinosaur standing upright like a human, with small arms, and a large head

with lots of sharp teeth.</p>

<code>

workshops.de

Aria States
Tells screen-readers if they should ignore the element.

<p aria-hidden="true">This content is ignored by screen readers.</p>

<p>This content is not hidden.</p>

<code>

workshops.de

Abbreviations
Help people to understand your text better

<p>
Web content is marked up using
<abbr title="Hypertext Markup Language">HTML</abbr>.
</p>

workshops.de

Mouse-specific events

Some events can have accessibility issues e.g. with keyboard controls

￫ mouseover

￫ mouseout

￫ dblclick

workshops.de

Keyboard based Navigation

workshops.de

Keyboard Navigation

￫ Make sure there is a visible focus style for interactive elements

￫ Check to see that keyboard focus order matches the visual layout.

￫ Remove invisible focusable elements.

<code>

workshops.de

Keyboard Navigation
Using the tabindex attribute

<label>First in tab order:<input type="text"></label>

<div tabindex="0">Tabbable due to tabindex.</div>

<div>Not tabbable: no tabindex.</div>

<label>Third in tab order:<input type="text"></label>

workshops.de

Focus Trap

￫ Loops the navigation that is made using the tab key inside a element

￫ Help your navigation to be accessible by users with disabilities

￫ Modal or alert element

workshops.de

The A11y Project

workshops.de

A11y Checklist

￫ A community-driven effort to

make web accessibility easier

￫ software, books, blogs,

online tools

￫ A11y Checklist

Task

workshops.de

Fix your page for keyboard
navigation

workshops.de

 Screen Readers

workshops.de

Screen readers are software applications that

attempt to convey what people with normal

eyesight see on a display to their users via

non-visual means like text-to-speech

workshops.de

Apple VoiceOver

CMD + F5

workshops.de

Microsoft Narrator

Windows logo key + Ctrl + Enter

Task

workshops.de

Use VoiceOver and fix image tags

workshops.de

Tools

workshops.de

Use tools to help you find

￫ Lacking keyboard support

￫ Missing labels

￫ Invalid ARIA attributes

￫ Color contrast

￫ …and more!

workshops.de

Codelyzer
Linting rules to sure your code meets accessibility standards

workshops.de

Codelyzer is a tool great for teams and

individuals, which helps you write consistent

code, and discover potential errors.

Task

workshops.de

Run Codelyzer on your project

workshops.de

Lighthouse
Google Chrome

workshops.de

Lighthouse

￫ Google Chrome Inspector

￫ Also possible to run via CLI

￫ Only a few rules for a11y

Task

workshops.de

Run a lighthouse cli check

workshops.de

Axe
JavaScript library for accessibility testing

workshops.de

What is Axe?

￫ JavaScript library for accessibility testing

￫ Engine powering browser extensions, test integrations

￫ A handy unit testing tool

￫ Open source

axe-core

workshops.de

Install the axe-core package

￫ Install the package via npm

￫ Add it to your devDependencies list

npm install axe-core --save-dev

<code>

workshops.de

Axe a11y Check
Example check

// Test an element reference, selector, or include/exclude object.
 var context = { exclude: ['#some-id'] };
 var config = {
 rules: {
 "color-contrast": { enabled: false },
 "valid-lang": { enabled: false }
 }
 };

 axe.a11yCheck(context, config, function(results) {
 // do stuff with the results
 });

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#a11ycheck-parameters

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#a11ycheck-parameters

<code>

workshops.de

Axe as Unit Test
It’s easy to integrate this into your test suite

var axe = require('axe-core');

 describe('Custom component', function() {
 it('should have no a11y violations', function(done) {
 axe.a11yCheck('.some-element-selector', {}, function (results) {
 expect(result.violations.length).toBe(0);
 done();
 });
 });
 });

Task

workshops.de

Write an axe unit test

axe-webdriverjs

workshops.de

Use Axe with different browsers

as integration test

workshops.de

Axe Browser Support

￫ Microsoft Edge v40 and above

￫ Google Chrome v42 and above

￫ Mozilla Firefox v38 and above

￫ Apple Safari v7 and above

￫ Internet Explorer v9, 10, 11

workshops.de

Install the axe-core package

￫ Install the package via npm

￫ Add it to your devDependencies list

npm install axe-webdriverjs --save-dev

<code>

workshops.de

Integration test with axe
Using Selenium to start a firefox instance and run your a11y checks

var AxeBuilder = require('axe-webdriverjs'),
 WebDriver = require('selenium-webdriver');

 var driver = new WebDriver.Builder().forBrowser('firefox').build();

 driver
 .get('https://localhost:4000')
 .then(function (done) {
 AxeBuilder(driver)
 .analyze(function (results) {
 expect(results.violations.length).toBe(0);
 done();
 });
 });

Task

workshops.de

Create and run an axe
integration test

workshops.de

Angular Material CDK
A11y CDK Package

workshops.de

The Angular Material a11y package provides a

number of tools to improve accessibility,

described below.

workshops.de

Angular CDK a11y

￫ The Angular Material library aims to be fully accessible

￫ A11y package supports

￫ LiveAnnouncer for Screen Readers

￫ cdkTrapFocus for e.g. Modal Dialogs

<code>

workshops.de

Angular Material CDK
Example for Routing and focus management

router.events.pipe(filter(e => e instanceof NavigationEnd)).subscribe(
() => {
 const mainHeader = document.querySelector('#main-content-header')
 if (mainHeader) {
 mainHeader.focus();
 }
});

