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Accessibility (a11y)
Allow everyone to use your applications
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Making your websites 

usable by as many people as possible



Why / What you’ll learn
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￫ Semantic HTML, which improves accessibility, also improves SEO, 

making your site more findable.

￫ Ethics and morals

￫ More usable by other groups

￫ It is also the law in some places



workshops.de

Disability
Overview about permanent and temporary Disabilities
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People with disabilities

￫ Visual: Blind, low-vision, color blind

￫ Hearing: Deaf, hard-of-hearing

￫ Motor: spinal cord injury, MS, Cerebral palsy, ALS

￫ Cognitive: Autism, learning, TBI, memory, attention
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Visual Disability 

Permanent Temporary

(Color) Blind Sunglasses Helmet
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Motor disabilities

Permanent Temporary

No Hand Broken Hand On the move
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Color and Contrast
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Color Blind People

Original
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Color Blind People

Original Red-Blind People
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Chrome Extension: Colorblinding
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Chrome Extension: Colorblinding
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Chrome Devtools: Contrast Ratio

￫ Build in chrome devtools

￫ Just select an element and click on 

the color



Task
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Check your page for color-blindness
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HTML
A good basis for accessibility



<code>
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HTML Semantics
Best accessibility a screen reader user can have is a content structure

<h1>My heading</h1>

<p>This is the first section of my document.</p>

<p>I'll add another paragraph here too.</p>

<ol>
  <li>Here is</li>
  <li>a list for</li>
  <li>you to read</li>
</ol>

<h2>My subheading</h2>



<code>

workshops.de

HTML Semantics
Modern website structure for layouts(instead of table layout)

<header>
  <h1>Header</h1>
</header>

<nav><!-- main navigation in here --></nav>

<!-- Here is our page's main content -->
<main>

  <!-- It contains an article -->
  <article>
    <h2>Article heading</h2>



<code>
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HTML Semantics
Beware of keyboard accessibility

<div (click)="clicked()">Click me!</div>



<code>

workshops.de

HTML Semantics
Beware of keyboard accessibility

<div (click)="clicked()">Click me!</div>

<button (click)="clicked()">Click me!</button>

<div (click)="clicked()" tabindex="0">Click me!</div>



<code>
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HTML Semantics
Meaningful text labels

Whales are really awesome creatures. To find more out about whales, <a 
href="whales.html">click here</a>.

Whales are really awesome creatures.
 <a href="whales.html">Find out more about whales</a>.
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HTML Semantics
Define alternative text for images

<img src="dinosaur.png"
     alt="A red Tyrannosaurus Rex: A two legged dinosaur standing upright 
like a human, with small arms, and a large head with lots of sharp 
teeth."
     title="The Mozilla red dinosaur">
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ARIA 
Accessible Rich Internet Applications 
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ARIA defines a way to make Web content and 

Web applications more accessible to people with 

disabilities



Why / What you’ll learn
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￫ It’s a official W3C specification

￫ More accessible to people with disabilities

￫ Defines roles, states and properties

￫ Adds more semantic to HTML elements



Role Attributes
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roles defining a type of user interface element
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Example Role
This link behaves more like a button and is marked with this role

<a href="#" role="button" aria-label="Delete item 1">Delete</a>
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Each role has 
different states and 
properties that can 
be defined
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Example Aria-Attribute
With aria-label a screen reader knows what to read on focus

<a href="#" role="button" aria-label="Delete item 1">Delete</a>
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Aria Alerts
Screen readers won't pick this up or alert users to it by default

<div class="errors" role="alert" aria-relevant="all">
  <ul>
  </ul>
</div>
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Aria Properties
Use labelledby if you display the alt-text anyway

<img src="dinosaur.png" aria-labelledby="dino-label">

<p id="dino-label">The Mozilla red Tyrannosaurus Rex: A two legged 

dinosaur standing upright like a human, with small arms, and a large head 

with lots of sharp teeth.</p>
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Aria States
Tells screen-readers if they should ignore the element.

<p aria-hidden="true">This content is ignored by screen readers.</p>
 
<p>This content is not hidden.</p>



<code>

workshops.de

Abbreviations
Help people to understand your text better

<p>
Web content is marked up using 
<abbr title="Hypertext Markup Language">HTML</abbr>.
</p>
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Mouse-specific events

Some events can have accessibility issues e.g. with keyboard controls

￫ mouseover

￫ mouseout

￫ dblclick
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Keyboard based Navigation
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Keyboard Navigation

￫ Make sure there is a visible focus style for interactive elements 

￫ Check to see that keyboard focus order matches the visual layout.

￫ Remove invisible focusable elements.
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Keyboard Navigation
Using the tabindex attribute

<label>First in tab order:<input type="text"></label>

<div tabindex="0">Tabbable due to tabindex.</div>

<div>Not tabbable: no tabindex.</div>

<label>Third in tab order:<input type="text"></label>
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Focus Trap

￫ Loops the navigation that is made using the tab key inside a element

￫ Help your navigation to be accessible by users with disabilities

￫ Modal or alert element 
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The A11y Project
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A11y Checklist

￫ A community-driven effort to 

make web accessibility easier

￫ software, books, blogs, 

online tools

￫ A11y Checklist



Task
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Fix your page for keyboard 
navigation
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 Screen Readers



workshops.de

Screen readers are software applications that 

attempt to convey what people with normal 

eyesight see on a display to their users via 

non-visual means like text-to-speech
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Apple VoiceOver

CMD + F5
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Microsoft Narrator

Windows logo key  + Ctrl + Enter



Task
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Use VoiceOver and fix image tags
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Tools
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Use tools to help you find

￫ Lacking keyboard support

￫ Missing labels

￫ Invalid ARIA attributes

￫ Color contrast

￫ …and more!
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Codelyzer
Linting rules to sure your code meets accessibility standards
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Codelyzer is a tool great for teams and 

individuals, which helps you write consistent 

code, and discover potential errors.



Task
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Run Codelyzer on your project 
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Lighthouse
Google Chrome
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Lighthouse

￫ Google Chrome Inspector

￫ Also possible to run via CLI

￫ Only a few rules for a11y



Task
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Run a lighthouse cli check 
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Axe
JavaScript library for accessibility testing
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What is Axe?

￫ JavaScript library for accessibility testing

￫ Engine powering browser extensions, test integrations

￫ A handy unit testing tool

￫ Open source



axe-core
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Install the axe-core package

￫ Install the package via npm

￫ Add it to your devDependencies list

npm install axe-core --save-dev



<code>
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Axe a11y Check
Example check

// Test an element reference, selector, or include/exclude object.
  var context = { exclude: ['#some-id'] };
  var config = {
    rules: {
        "color-contrast": { enabled: false },
        "valid-lang": { enabled: false }
    }
  };

  axe.a11yCheck(context, config, function(results) {
    // do stuff with the results
  });

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#a11ycheck-parameters

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#a11ycheck-parameters
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Axe as Unit Test
It’s easy to integrate this into your test suite

var axe = require('axe-core');

  describe('Custom component', function() {
    it('should have no a11y violations', function(done) {
      axe.a11yCheck('.some-element-selector', {}, function (results) {
        expect(result.violations.length).toBe(0);
        done();
      });
    });
  });



Task
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Write an axe unit test



axe-webdriverjs
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Use Axe with different browsers 

as integration test 
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Axe Browser Support

￫ Microsoft Edge v40 and above

￫ Google Chrome v42 and above

￫ Mozilla Firefox v38 and above

￫ Apple Safari v7 and above

￫ Internet Explorer v9, 10, 11
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Install the axe-core package

￫ Install the package via npm

￫ Add it to your devDependencies list

npm install axe-webdriverjs --save-dev
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Integration test with axe
Using Selenium to start a firefox instance and run your a11y checks

var AxeBuilder = require('axe-webdriverjs'),
      WebDriver = require('selenium-webdriver');
 
  var driver = new WebDriver.Builder().forBrowser('firefox').build();
 
  driver
    .get('https://localhost:4000')
    .then(function (done) {
      AxeBuilder(driver)
        .analyze(function (results) {
          expect(results.violations.length).toBe(0);
          done();
        });
    });



Task
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Create and run an axe
integration test
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Angular Material CDK
A11y CDK Package
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The Angular Material a11y package provides a 

number of tools to improve accessibility, 

described below.
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Angular CDK a11y

￫ The Angular Material library aims to be fully accessible

￫ A11y package supports

￫ LiveAnnouncer for Screen Readers

￫ cdkTrapFocus for e.g. Modal Dialogs
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Angular Material CDK
Example for Routing and focus management

router.events.pipe(filter(e => e instanceof NavigationEnd)).subscribe(
() => {
  const mainHeader = document.querySelector('#main-content-header')
  if (mainHeader) {
    mainHeader.focus();
  }
});


